Appendix A: CCSS College and Career Readiness Anchor Standards The CCSS College and Career Readiness (CCR) Anchor Standards define the literacy expectations for students entering college and careers and provide the foundation for the K-12 English language arts standards. Although the CCR Anchor Standards were not part of the California State Board of Education action in August 2010, they are essential to understanding the structure and cohesive nature of the CCSS. #### Reading #### **Key Ideas and Details** - 1. Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text. - 2. Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. - 3. Analyze how and why individuals, events, and ideas develop and interact over the course of a text. #### **Craft and Structure** - 4. Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone. - 5. Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text (e.g., a section, chapter, scene, or stanza) relate to each other and the whole. - 6. Assess how point of view or purpose shapes the content and style of a text. #### **Integration of Knowledge and Ideas** - 7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words.¹ - 8. Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence. - 9. Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take. # Range of Reading and Level of Text Complexity 10. Read and comprehend complex literary and informational texts independently and proficiently. #### Writing # **Text Types and Purposes²** 1. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence. ¹ Please see "Research to Build and Present Knowledge" in Writing and "Comprehension and Collaboration" in Speaking and Listening for additional standards relevant to gathering, assessing, and applying information from print and digital sources. ² These broad types of writing include many subgenres. See Appendix A for definitions of key writing types These broad types of writing include many subgenres. See Appendix A for definitions of key writing types [http://www.corestandards.org/assets/Appendix A.pdf]. - 2. Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization, and analysis of content. - 3. Write narratives to develop real or imagined experiences or events using effective technique, well-chosen details, and well-structured event sequences. #### **Production and Distribution of Writing** - 4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. - 5. Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach. - 6. Use technology, including the Internet, to produce and publish writing and to interact and collaborate with others. #### Research to Build and Present Knowledge - 7. Conduct short as well as more sustained research projects based on focused questions, demonstrating understanding of the subject under investigation. - 8. Gather relevant information from multiple print and digital sources, assess the credibility and accuracy of each source, and integrate the information while avoiding plagiarism. - 9. Draw evidence from literary or informational texts to support analysis, reflection, and research. # **Range of Writing** 10. Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audiences. #### **Speaking and Listening** # **Comprehension and Collaboration** - 1. Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively. - 2. Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally. - 3. Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric. #### **Presentation of Knowledge and Ideas** - 4. Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience. - 5. Make strategic use of digital media and visual displays of data to express information and enhance understanding of presentations. - 6. Adapt speech to a variety of contexts and communicative tasks, demonstrating command of formal English when indicated or appropriate. #### Language #### **Conventions of Standard English** - 1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking. - 2. Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing. ### **Knowledge of Language** 3. Apply knowledge of language to understand how language functions in different contexts, to make effective choices for meaning or style, and to comprehend more fully when reading or listening. #### **Vocabulary Acquisition and Use** - 4. Determine or clarify the meaning of unknown and multiple-meaning words and phrases by using context clues, analyzing meaningful word parts, and consulting general and specialized reference materials, as appropriate. - 5. Demonstrate understanding of word relationships and nuances in word meanings. - 6. Acquire and use accurately a range of general academic and domain-specific words and phrases sufficient for reading, writing, speaking, and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when encountering an unknown term important to comprehension or expression. # **Appendix B: Standards for Mathematical Practice** The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM [National Council of Teachers of Mathematics] process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up:* adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy). # 1. Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. #### 2. Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to *decontextualize*—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to *contextualize*, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. #### 3. Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. #### 4. Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. #### 5. Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. #### 6. Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. #### 7. Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. #### 8. Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y-2)/(x-1)=3. Noticing the regularity in the way terms cancel when expanding (x-1)(x+1), $(x-1)(x^2+x+1)$, and $(x-1)(x^3+x^2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. # **Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content** The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction. The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices. In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics. # References - California Commission on Teacher Credentialing and California Department of Education. 1997. *California Standards for the Teaching Profession*. Sacramento: California Department of Education. - California Department of Education. 1991. Fact Sheet 1990-91. Sacramento: California Department of Education. - ——. 2001. Visual and Performing Arts Content Standards for California Public Schools, Prekindergarten Through Grade Twelve. Sacramento: California Department of Education. - ——. 2002. English-Language Development Standards for California Public Schools, Kindergarten Through Grade Twelve. Sacramento: California Department of Education. - ——. 2003a. Foreign Language Framework for California Public Schools, Kindergarten Through Grade Twelve. Sacramento: California Department of Education. - ——. 2003b. *Health Framework for California Public Schools, Kindergarten Through Grade Twelve*. Sacramento: California Department of Education. - ——. 2004a. *Science Framework for California Public Schools, Kindergarten Through Grade Twelve*. Sacramento: California Department of Education. - ——. 2004b. Visual and Performing Arts Framework for California Public Schools, Kindergarten Through Grade Twelve. Sacramento: California Department of Education. - ——. 2005. *History–Social Science Framework for California Public Schools, Kindergarten Through Grade Twelve*. Sacramento: California Department of Education. - ——. 2007a. Closing the Achievement Gap: Report of Superintendent Jack O'Connell's California P-16 Council. Sacramento: California Department of Education. - ——. 2007b. Reading/Language Arts Framework for California Public Schools, Kindergarten Through Grade Twelve. Sacramento: California Department of Education. - ——. 2008. *California Preschool Learning Foundations, Volume 1*. Sacramento: California Department of Education. - ——. 2009. *Physical Education Framework for California Public Schools, Kindergarten Through Grade Twelve*. Sacramento: California Department of Education. - ——. 2010a. DataQuest census reports. http://dq.cde.ca.gov/dataquest/ (accessed October 1, 2010). - ——. 2010b. *Improving Education for English Learners: Research-Based Approaches*. Sacramento: California Department of Education. - ——. 2010c. "State Schools Chief Jack O'Connell Releases 2009-10 Accountability Progress Report." News release, September 13, 2010. Sacramento: California Department of Education. - ——. 2010d. 2009-10 Academic Performance Index Reports Information Guide. http://www.cde.ca.gov/ta/ac/ap/documents/infoguide09.pdf (accessed October 1, 2010). - ——. 2010e. World Language Content Standards for California Public Schools, Kindergarten Through Grade Twelve. Sacramento: California Department of Education. - ——. 2011. *Model School Library Standards for California Public Schools, Kindergarten Through Grade Twelve*. Sacramento: California Department of Education. - National Research Council. 2001. *Adding It Up: Helping Children Learn Mathematics*. Washington, DC: National Academy Press. - Preston, Nancy R. 2009. A is for Einstein: The Alphabet Versus the Internet. *Phi Delta Kappan* 91, no. 1 (September 2009). - Sacramento County Office of Education. 2010a. *Recommendations for K–12 Common Core State Standards for English/Language Arts*. Sacramento: Sacramento County Office of Education. - ——. 2010b. *Recommendations for K–12 Common Core State Standards for Mathematics*. Sacramento: Sacramento County Office of Education. - U.S. Department of Education. 2007. *No Child Left Behind: Teacher-to-Teacher Initiative*. http://www.ed.gov/teachers/how/tools/initiative/factsheet.pdf (accessed October 1, 2010).